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1. Introduction

Applications frequently arise in which it is not feasible to produce an accurate solution
to the transport equation due to highly heterogeneous spatial (and temporal) variations
in the physical properties of the medium. Examples include: inertial confinement fusion
(ICF), where Rayleigh-Taylor instabilities lead to spatially complex structures composed
of chunks of solid material randomly dispersed in background plasma [1]; representing
clouds in atmospheric radiative transfer models [2]; the so-called double-heterogeneity
problem in pebble-bed nuclear reactors that comprises a random configuration of fuel-
moderator pebbles, each containing fuel pellets randomly dispersed in a graphite ma-
trix [3]; multiphase effects in boiling water reactors as well as potentially in liquid-fuel
reactors and molten salt reactors.

Because of the practical challenge of rendering very complex realistic spatial struc-
tures for numerical work, it is common practice to resort to characterizing such media
as stochastic mixtures of materials, ideally parametrized with low order statistics such
as the mean, variance, and correlation functions of the now random material properties.
This enables realizations of the medium to be repeatedly generated and radiation trans-
port computations to, in principle, be performed for a large ensemble of these realizations
to obtain a statistically well-characterized radiation field. Statistical post-processing
yields desired quantities such as conditional and unconditional mean radiation flux and
probability distributions of transmitted radiation. However, such computations prove
expensive for all but the simplest stochastic geometries and are most suited for bench-
marking approximate models. The most common approximations lead to homogenized
media so that transport computations are required only on a single medium realization
but by construct provide only limited statistical information on the radiation field. Al-
most all approximate approaches to this problem attempt to develop equations for low
order moments of the radiation intensity (mean, second moment, correlation function)
but inevitably encounter a closure problem: the equation for any statistical moment will
contain terms depending on unknown higher-order moments. Thus, the challenge shifts
to one of developing closure relations that relate the unknown moments to the lower-
order moments. Under very special conditions, an exact closure can be derived but in
general closures are heuristically stated constitutive relations. Also, closure approaches
depend on whether the mixing statistics are spatially and/or temporally continuous as
in fluctuating turbulent fields, or discontinuous as in randomly mixed solid chunks of
material. Thus, unconditional averaging is generally applied in the former case but
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conditional averaging is more appropriate when the mixing is discontinuous. In this
work, the emphasis is on binary statistical mixtures of immiscible fluids as as such the
quantities of interest are averages (flux, temperature) conditioned on the material type.

The simples homogenized medium approximation is the atomic mix approximation
where the random cross-sections (equivalently opacities in the context of thermal radi-
ation transport) are replaced by deterministic material volume fraction weighted aver-
ages [4]. However, this approximation is valid only when the particle mean free path is
much longer than the mean chord length of each material so that on average the par-
ticle samples many material changes before colliding. The volume fraction is then the
only statistical parameter required to characterize the mixture. Although only a single
transport solve is required in the atomic mix approximation, the solution is valid only
under conditions of weak stochastic effects.

More realistic modeling requires development of higher-order homogenized material
models which more accurately describe strong mixing when the statistics are known. One
such situation that has become a paradigm in this field is Markovian mixing wherein
the individual material chunk thicknesses are exponentially distributed [1]. When ad-
ditionally both materials are nonscattering or nonemitting, i.e., there is no angular
redistribution of the radiation, the stochastic process representing material mixing and
transport is jointly Markovian and an exact pair of coupled equations can be written
down for the averaged flux conditioned on the material type [1]. However, when one or
both materials are also scattering or reemitting, the resulting angular redistribution of
radiation makes the joint process non-Markovian and a closure is required to obtain a
similar pair of equations for the material averaged fluxes. In the absence of an exact
closure, heuristic closures have been developed leading to an inexact model. The best
knokwn and widely employed is the so-called Levermore-Pomraning (LP) closure which
amounts to making a Markovian assumption and hence has the advantage of becoming
exact in the absence of angular redistribution [5]. The model error depends on the extent
of scattering and overall medium thickness and can be significant when the medium is
diffusive. Nevertheless, the LP model is robust and easily implemented, requiring the
solution of only two transport equations (essentially a two-group model) and therefore
does not require much additional computational effort beyond the atomic mix model
while yielding greater accuracy.

The closure method was originally developed for the radiation field only but was sub-
sequently extended to apply to thermal radiation transport in participating media where
the material temperature is an additional unknown stochastic variable [6]. However, the
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dependence of physical properties (opacity, density, specific heat) on temperature makes
the coupled problem nonlinear and further weakens the validity of the LP closure. In-
vestigations have therefore been restricted to the linear version of the coupled problem
for which the original conditions for the application of the LP closure are restored. To
date, a systematic extension of the stochastic approach to account for nonlinear tem-
perature dependence has not been developed, although heuristic generalizations have
been attempted. Moreover, most of the work on stochastic thermal radiation trans-
port has been restricted to 1D planar geometry with Markovian mixing where medium
realizations are easily generated. Implementation in higher dimensions have not been
attempted but interesting applications to multidimensional stochastic geometries in the
neutron transport context have been recently presented [7].

In this dissertation, two generalizations of work to date on thermal radiation transport
in participating stochastic media are proposed. In the first, an approach is presented
that accounts for nonlinearities without approximation in the stochastic formulation.
Numerical tests are carried out for a special problem where material transitions occur
in time only. This ensures the closure is exact and enables a systematic numerical
evaluation of the effects of dependence of physical properties on the random temperature
by comparing against heuristic models. In the second, 1D and 2D stochastic geometries
will be implemented in the LANL Branson Implicit Monte Carlo (IMC) coupled thermal
radiation - material temperature code. The goal here is a detailed numerical investigation
of the accuracy of the LP closure, known as the chord length sampling (CLS) algorithm,
in 1D and 2D in a realistic setting, with 2D random geometries generated based on
the Box-Poisson algorithm recently implemented for nuclear criticality applications [7].
Specific problems to be investigated include (i) exploring an earlier hypothesis that
the LP closure is more accurate in 2D than in 1D due to reduced correlation, and
(ii) assessing if the previously demonstrated result in the radiation-only case that the
diffusion limit for 1D planar random media is the atomic mix diffusion equation extends
to the coupled case and if it also holds in 2D. Finally, time permitting, a heuristic non-
Markovian extension of the LP closure will be considered that allows for memory effects
near material interfaces.
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2. Transport in Binary Statistical Media

Frequently in studies of stochastic media, the media in question is represented as a binary
system of immiscible, non-participating materials structured according to discontinuous
mixing statistics [8]. An example illustration of a binary stochastic media which could
result from an inertial confinement fusion experiment subjected to a thermal radiation
fluence is seen in Figure 1. In this image, note that the phrasing ”optically thin” simply
refers to a smaller relative value of material opacity, while ”optically thick” refers to the
larger value thereof.

Figure 1: Thermal Radiation Propagating in Binary Stochastic Media

These materials within the system are characterized by a statistical representation of
relevant properties of the spatial geometry. Typically, such a characterization involves
the use of a mean chord length, λi, within material i, defined such that if a ray extend-
ing an infinite distance were cast through any arbitrary direction in the material, the
average distance comprised of each material between transitions would by the law of
large numbers approach the mean chord length. This parameter is directly related to
the volume fraction pi of each material, as seen in equations (1) and (2):

p1 = λ1

λ1 + λ2
(1)

p2 = λ2

λ1 + λ2
= 1 − p1 (2)

A Markovian transition of materials is one in which the system statistics do not
possess memory of any state preceding its current state, characterized by an exponential
distribution parameterized by the mean chord length. Given Poisson statistics for the
system, at any given point in space, the probability P that a distance di of material i

4



will be present per unit distance is given by the probability distribution function shown
in equation (3):

P (i) = 1
λi

e
− di

λi (3)

Equation (3) may be integrated to obtain the cumulative distribution function, and
with further algebraic operations an expression for di in terms of a random number ξ
sampled from a uniform distribution may be obtained, shown in equation (4):

di = −λi ln (ξ) (4)

Given specific values for λ1 and λ2, a realization of geometry may be generated easily
for a one-dimensional case. Such visualizations are shown in Figures 2 and 3. These
realizations may be consistent in time, that is, solved within a steady-state model context
if geometric stochasticity is the only driving factor of the model, but temporally-varying
stochastic models are also viable.

Figure 2: Independent 1D Realizations of λ1 = 101
20 cm, λ2 = 101

20 cm
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Figure 3: Independent 1D Realizations of λ1 = 99
100 cm, λ2 = 11

100 cm

In these figures, the relation between the mean geometric chord length of each material
to that material’s volume fraction can be seen. Similar mean chord lengths produce
similar volume fractions, though subjected to stochastic sampling, while diverse mean
chord lengths result in diverse volume fractions, reflective of whichever material is the
dominant material in the resulting profiles.
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3. Linear Transport

A linear neutral-particle transport equation for a monoenergetic system [5] can be writ-
ten as seen in equation (5):

1
v

∂ψ
(
r⃗, Ω⃗, t;ω

)
∂t

+ Ω⃗ · ∇⃗ψ
(
r⃗, Ω⃗, t;ω

)
+ σt (r⃗, t;ω)ψ

(
r⃗, Ω⃗, t;ω

)
= σs (r⃗, t;ω)

4π

∫
4π
dΩ⃗′ψ

(
r⃗, Ω⃗′, t;ω

)
+ S

(
r⃗, Ω⃗, t;ω

)
(5)

In this representation, v is the particle velocity, Ω⃗ is the particle direction vector, r⃗ is
the spatial location vector, and t is a time value. Material properties of the system are
contained in σt, the total material cross-section, and σs, the material scattering cross-
section. S

(
r⃗, Ω⃗, t;ω

)
is a generic angular particle source term. ψ is the angular flux of

the system, defined via a distribution function f
(
r⃗, Ω⃗, t;ω

)
where fdr⃗dΩ⃗ describes the

number of particles in dr⃗dΩ⃗ at time t. The relationship between ψ and f is shown in
the below equation:

ψ
(
r⃗, Ω⃗, t;ω

)
= vf

(
r⃗, Ω⃗, t;ω

)
(6)

All parameters within equation (5) exist within the context of a single realization of
materials governed by known sampling statistics, denoted by ω. Therefore, the linear
transport equation may be solved on any one realization of stochastic media, and again
on subsequent realizations derived from the same sampling statistics. The ensemble
average result of parameters of interest (typically the flux ψ is one such parameter)
may be used to approximate low-order moments such as the mean through many such
realizations.

3a. Atomic Mix

Deriving a transport equation as (5) for a stochastic media system without the require-
ment of solving the equation on individual realizations can be done [5]. The simplest
approach is to make an atomic mix assumption, which relies on the presupposition that
the mean chord length of each material is small relative to the mean free path of the
transport particle in question, allowing for a given particle in the system to experience
many material transitions before suffering a collision.
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The atomic mix model makes the assumption that the solution of the transport equa-
tion in a disparate stochastic media is similar to the same equation solved over a homog-
enized, or atomically mixed, combination of the materials involved. This is accomplished
by deriving average quantities of material properties, such as the opacity ⟨σa (r⃗, t)⟩, from
a sum weighted by the constituent volume fractions of the individual materials. This
can be seen in equation (7):

⟨σa (r⃗, t)⟩ = p1σa1 (r⃗, t) + p2σa2 (r⃗, t) (7)

Other material properties are the specific heat and density, which are similarly weighted
by a volume fraction for each material and averaged using a simple sum. The result-
ing transport equation contains the atomically-mixed material parameters, shown in
equation (8):

1
v

∂
〈
ψ
(
r⃗, Ω⃗, t

)〉
∂t

+ Ω⃗ · ∇⃗
(〈
ψ
(
r⃗, Ω⃗, t

)〉)
+ ⟨σt (r⃗, t)⟩

〈
ψ
(
r⃗, Ω⃗, t

)〉
= ⟨σs (r⃗, t)⟩

4π ⟨ϕ (r⃗, t)⟩ +
〈
S
(
r⃗, Ω⃗, t

)〉
(8)

The atomic mix model effectively removes any available streaming paths through
whichever material may be the most optically thin from the perspective of a trans-
port particle. This effectively over-approximates the attenuating characteristics of the
optically thicker media, regardless of the volume fractions involved in the problem.

The atomic mix model does however exhibit the expected behavior of increasing accu-
racy as the material chord lengths in the system decrease towards an atomically mixed
length. That is, as the material mean chord lengths approach zero relative to the mean
free path of the particle, the atomic mix model becomes a more appropriate model to
apply.

3b. Levermore-Pomraning Model

A generally more accurate method of approximating the linear transport equation within
a stochastic media context involves using ensemble average statistics on each term of the
linear transport equation [5]. This process relies on a characteristic function to facilitate
the statistical derivation, shown in equation (9):
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χi (r⃗, t) =

0, if position r⃗ is in material i at time t

1, otherwise
(9)

The ensemble average process results in a conditional system of equations constructed
from particle balance properties that are exactly closed in most terms, with the exception
of the radiation streaming term due to mixing statistics. The resulting equation from
an ensemble average process is shown in the coupled equations (10) and (11), governed
by the material definition of equation (12):

1
v

∂piψi

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗
(
piψi

(
r⃗, Ω⃗, t

))
+ σti (r⃗, t) piψi

(
r⃗, Ω⃗, t

)
= σsi (r⃗, t)

4π pi

∫
4π
dΩ⃗′ψi

(
r⃗, Ω⃗′, t

)
+ piSi

(
r⃗, Ω⃗, t

)
+
pjψj

(
r⃗, Ω⃗, t

)
λj

−
piψi

(
r⃗, Ω⃗, t

)
λi

(10)

1
v

∂pjψj

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗
(
pjψj

(
r⃗, Ω⃗, t

))
+ σtj (r⃗, t) pjψj

(
r⃗, Ω⃗, t

)
= σsj (r⃗, t)

4π pj

∫
4π
dΩ⃗′ψj

(
r⃗, Ω⃗′, t

)
+ pjSj

(
r⃗, Ω⃗, t

)
+
piψi

(
r⃗, Ω⃗, t

)
λi

−
pjψj

(
r⃗, Ω⃗, t

)
λj

(11)

i, j = 1, 2 i ̸= j (12)

In the above equation, v is the particle velocity. Conditional quantities for materials i
and j, conditioned on the material at that location in phase-space being either material
i or j, include the conditional angular flux ψi and ψj, the total cross-section σti and σtj,
the scattering cross-section σsi and σsj, and a distributed source Si and Sj.

One parameter of interest in solving this equation is the conditional angular flux ψi

in material i. Solving for this term depends on knowledge of ψi, which is defined as the
ensemble average conditional angular flux at internal transition boundaries within the
problem domain. It is not trivial to write ψi in terms of ψi, as this is where the closure
problem arises. The values for ψi and ψj cannot be established a priori to computation.

For a time-independent, purely absorbing medium subject to Markovian mixing statis-
tics, it is an exact solution to replace ψi with ψi and ψj with ψj. Such a substitution
comprises the Levermore-Pomraning closure model. However, because an exact general
formula for ψi in terms of ψi has not been found, the LP closure is of limited utility
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when predicting the solution of stochastic media problems. In the event of angular re-
distribution of any kind, the Markovian closure relationship described by the LP model
breaks down.

As stated, the Levermore-Pomraning closure heuristically invokes the use of proba-
bilistic streaming terms [9] by making the substitution seen in equation (13):

ψi

(
r⃗, Ω⃗, t

)
= ψi

(
r⃗, Ω⃗, t

)
ψj

(
r⃗, Ω⃗, t

)
= ψj

(
r⃗, Ω⃗, t

)
(13)

The above substitution is a generally heuristic statement that the ensemble average
conditional angular flux across material interfaces in the solution domain is equivalent
to the volumetrically-averaged conditional angular flux in that location in phase space.
This is an accurate statement only in the case of strictly Markovian mixing statistics
for the stochastic geometry, and a lack of angular redistribution in the problem either
through particle scattering or absorption and subsequent re-emission. The LP closure
results in the coupled transport equations seen in equation (14) and (15), similarly
governed by the material definition equation (16):

1
v

∂piψi

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗
(
piψi

(
r⃗, Ω⃗, t

))
+ σti (r⃗, t) piψi

(
r⃗, Ω⃗, t

)
= σsi (r⃗, t)

4π pi

∫
4π
dΩ⃗′ψi

(
r⃗, Ω⃗′, t

)
+ piSi

(
r⃗, Ω⃗, t

)
+
pjψj

(
r⃗, Ω⃗, t

)
λj

−
piψi

(
r⃗, Ω⃗, t

)
λi

(14)

1
v

∂pjψj

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗
(
pjψj

(
r⃗, Ω⃗, t

))
+ σtj (r⃗, t) pjψj

(
r⃗, Ω⃗, t

)
= σsj (r⃗, t)

4π pj

∫
4π
dΩ⃗′ψj

(
r⃗, Ω⃗′, t

)
+ pjSj

(
r⃗, Ω⃗, t

)
+
piψi

(
r⃗, Ω⃗, t

)
λi

−
pjψj

(
r⃗, Ω⃗, t

)
λj

(15)

i, j = 1, 2 i ̸= j (16)

This serves as a first-order closure approximation to the unclosed transport equation.
As discussed, the LP model is exact in cases of a pure-absorber Markovian-mixing geom-
etry, but loses accuracy with the introduction of non-Poisson statistics in the geometry
generation, or with the introduction of angular redistribution in the form of scattering
or particle re-emission.
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The LP equations are now closed and allow for direct computation of the conditional
angular flux ψi and ψj, among other parameters. One useful parameter may be the
unconditional average angular flux

〈
ψ
(
r⃗, Ω⃗, t

)〉
, computed as shown in equation (17):

〈
ψ
(
r⃗, Ω⃗, t

)〉
= piψi

(
r⃗, Ω⃗, t

)
+ pjψj

(
r⃗, Ω⃗, t

)
(17)

3c. Illustration of Atomic Mix and LP Performance

As an illustration of the properties of the atomic mix and the LP closure models, con-
sider a strongly-absorbing problem subject to the physical parameters in Table 1. These
parameters correspond to equal volume fractions of both Material 1 and Material 2,
however Material 1 is a very weak pure scattering material, while Material 2 is a cor-
respondingly very strong pure absorbing material. The problem is subjected to an
isotropic source of unit magnitude at the left boundary, and a vacuum condition at the
right boundary. Under these conditions, we expect the LP model to perform very well
due to the strong absorber nature of the problem, but the atomic mix model to perform
poorly due to the homogenization effect of removing streaming paths in the problem.
These results can be seen in Figure 4a. The exact solution in this figure is the result of
an S16 diamond-difference transport model applied over 5 × 105 generated realizations.

Parameter Value
σt1

2
101

σt2
200
101

σs1
σt1

1.00
σs2
σt2

0.00
λ1

101
20

λ2
101
20

Table 1: A Common Purely Absorbing Material and an Uncommon Purely Scattering
Material

Additionally, we may consider a problem with two strongly scattering materials, with
parameters seen in Table 2. The results from these parameters may be seen in Figure 4b.
For these parameters, the LP closure model is expected to diverge from the true solution
due to the introduction of a significant amount of angular redistribution in the form of
scattering, providing a memory-effect to the particles in the problem. One can think
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of this memory-effect as appearing when the particles are angularly redistributed in a
direction opposite to their original flight path, and subsequently see the same materials
as they have already traveled through, violating Markovian statistics for that individual
particle. In this problem, the atomic mix model will perform better than in the last
problem due to there being no obvious streaming avenues available, and the material
parameters themselves are closer to the homogenized values than those in the previous
problem discussed.

Parameter Value
σt1

10
99

σt2
100
11

σs1
σt1

0.90
σs2
σt2

0.90
λ1

99
100

λ2
11
100

Table 2: Two Strongly Scattering Materials

(a) Strongly-Absorbing Profile (b) Strongly-Scattering Profile

Figure 4: LP vs. Pure Absorber Profiles
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4. Thermal Radiation Transport

In the thermal radiation or radiative transport physical regime, the transport equation
is tightly coupled to a material energy balance equation, leading to nonlinearities in
the transport model. Equation (18) presents the gray radiative transfer equation, while
Equation (19) presents the thermal energy balance, resulting in two coupled equations
that apply to a stochastically-sampled realization ω. In this equation, I is the angular-
dependent intensity value of the radiation, T is the temperature of the medium, c is the
speed of light, and a is the radiation constant. The opacity values in the equations are
σa, σs, and σt, representing the absorption, effective scattering, and total opacity respec-
tively. The nonlinearities of the equation are present due to the thermal dependence of
material values - namely the opacity, density, and specific heat capacity.

1
c

∂I
(
r⃗, Ω⃗, t;ω

)
∂t

+ Ω⃗ · ∇⃗I
(
r⃗, Ω⃗, t;ω

)
+ σt (T, r⃗, t;ω) I

(
r⃗, Ω⃗, t;ω

)
=

cσa (T, r⃗, t;ω)
4π a [T (r⃗, t;ω)]4 + σs (T, r⃗, t;ω)

4π

∫
4π
I
(
r⃗, Ω⃗′, t;ω

)
dΩ⃗′ (18)

ρ (T, r⃗, t;ω)Cv (T, r⃗, t;ω) ∂T (r⃗, t;ω)
∂t

+ cσa (T, r⃗, t;ω) a [T (r⃗, t;ω)]4

= σa (T, r⃗, t;ω)
∫

4π
dΩ⃗′I

(
r⃗, Ω⃗, t;ω

)
(19)

Transforming the thermal radiation transport equations into conditional equations
that do not require independent solution over many realizations to produce an ensemble-
averaged result involves a similar statistical process of ensemble averaging each term as
in the linear transport equation, including the formation of a similar radiation streaming
term coupling the two materials in a binary system. This results in the four coupled
conditional equations (20) and (21) as transport equations and (22) and (23) as balance
equations, governed by the material definition in equation (24):

1
c

∂piIi

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗piIi

(
r⃗, Ω⃗, t

)
+ σti (Ti, r⃗, t) Ii

(
r⃗, Ω⃗, t

)
= cσai (Ti, r⃗, t)

4π pia [Ti (r⃗, t)]4+σsi (Ti, r⃗, t)
4π

∫
4π
piIi

(
r⃗, Ω⃗, t

)
dΩ⃗′+

pjIj

(
r⃗, Ω⃗, t

)
λj

−
piIi

(
r⃗, Ω⃗, t

)
λi

(20)
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1
c

∂pjIj

(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗pjIj

(
r⃗, Ω⃗, t

)
+ σtj (Tj, r⃗, t) Ij

(
r⃗, Ω⃗, t

)
= cσaj (Tj, r⃗, t)

4π pja [Tj (r⃗, t)]4+σsj (Tj, r⃗, t)
4π

∫
4π
pjIj

(
r⃗, Ω⃗, t

)
dΩ⃗′+

piIi

(
r⃗, Ω⃗, t

)
λi

−
pjIj

(
r⃗, Ω⃗, t

)
λj

(21)

ρi (Ti, r⃗, t)Cvi (Ti, r⃗, t)
∂piTi (r⃗, t)

∂t
+ acσai (Ti, r⃗, t) pi [Ti (r⃗, t)]4

= σai (Ti, r⃗, t)
∫

4π
dΩ⃗′piIi

(
r⃗, Ω⃗, t

)
(22)

ρi (Tj, r⃗, t)Cvj (Tj, r⃗, t)
∂pjTj (r⃗, t)

∂t
+ acσaj (Tj, r⃗, t) pj [Tj (r⃗, t)]4

= σaj (Tj, r⃗, t)
∫

4π
dΩ⃗′pjIj

(
r⃗, Ω⃗, t

)
(23)

i, j = 1, 2 i ̸= j (24)

These equations are, as before, dependent on conditional values of parameters of
interest as well as material properties. The values for Ii and Ij are similarly defined as the
conditional ensemble average values of the radiation intensity at the material interface
points, which raises a similar closure problem as that highlighted in the linear transport
model in that these terms depend on higher-order moments, and cannot be determined
simply or a priori outside of specific conditions, namely that the geometry is distributed
according to Markovian statistics and that there is no angular redistribution of the
radiation in the problem. Additionally, the nonlinearities introduced by the thermal
dependence of the material properties cannot normally be accounted for, necessitating a
method of consistent treatment of the nonlinear terms to study the effect that a heuristic
treatment of these nonlinearities has on a system, as explained in the next section of
this document.

One important facet to note of the thermal radiation transport equations is that they
may themselves be linearized through the use of two assumptions: namely that the
material opacity is strictly a function of the cube of the material temperature, and that
the material specific heat capacity is strictly a function of the inverse of the cube of the
material temperature.
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5. Nonlinear Temperature Dependence

While previous work in this area of research has primarily focused on space-dependent
models, this section will present a space-independent system for a transport problem.
This is motivated by the fact that to date the LP closure is largely applied to stochastic
media problems that may be formulated using linear transport equations, which allows
for all interaction terms to be expressed in terms of conditionally averaged values without
approximation. When the LP closure is applied to a thermal radiative transport prob-
lem, where the transport equation is likely to be nonlinear in nature as the absorption
and emission terms are functions dependent on temperature, the averaging approach
normally applied fails. Averages of nonlinear terms cannot be expressed in terms of the
average temperature in each material, resulting in a secondary closure problem due to
temperature itself being a stochastic term. A purely time-dependent model renders the
LP closure exact, such that the effects of nonlinearities may be precisely established and
studied.

To establish this model, consider a spatially homogeneous geometry, effectively com-
prised of a single cell such that all temporal effects are felt instantaneously within the
system. This may be conceived of as a subvolume within a large computational domain.
As time progresses, the material comprising the system will switch between two states
subject to Poisson statistics in time. This is similar to the spatial realizations visualized
in Figures 2 and 3, however the unit of propagation is temporal as opposed to spatial.

Coupled nonlinear equations of radiation intensity I and temperature T for a time-
dependent space-independent transport model for gray radiation can be written as a
function of the material state ω, seen in equations (25) and (26). Material properties
include density ρ, specific heat Cv, and opacity σa. The spatially-independent nature of
this problem statement renders any angular redistribution within the problem physics
as a non-issue.

1
c

∂I (t;ω)
∂t

+ σa (T, t;ω) I (t;ω) = cσa (T, t;ω) aT 4 (t;ω) (25)

ρ (T, t;ω)Cv (T, t;ω) ∂T (t;ω)
∂t

+ cσa (T, t;ω) aT 4 (t;ω) = σa (T, t;ω) I (t;ω) (26)

These equations are subject to nonrandom initial conditions, seen in equation (27):

I (0;ω) = I0, T (0;ω) = T0 (27)
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It should be noted that while this model does exactly preserve the temperature non-
linearity within a stochastic temporal model, it is not necessarily representative of any
particular physical phenomena. The primary reason for this is in the characteristics of
the model: radiation intensity and material temperature are both preserved across ma-
terial transitions, while only material properties are stochastic in time. While radiation
intensity is simple to conceptually apply as a conserved quantity, it is difficult to con-
ceive of a physically occurring system where temperature is instantaneously conserved
between two materials on a radiative transport time-scale, regardless of which material
currently occupies the spatially homogeneous system.

However, due to the preservation of both intensity and temperature, these quantities
may be obtained exactly as first-order moments. By defining the intensity and temper-
ature within a given realization as ϕ and θ respectively, these moment equations may be
written in terms of the probability density Pi (ϕ, t) that ϕ lies in the range (ϕ, ϕ+ dϕ)
conditioned on the material at time t being i, and the probability density Pi (θ, t) that
θ lies in the range (θ, θ + dθ) conditioned on the material at time t being i, respectively.
These moment equations are shown in equations (28) and (29):

ϕi (t) =
∫ ∞

0
ϕPi (ϕ, t) dϕ (28)

θi (t) =
∫ ∞

0
θPi (θ, t) dθ (29)

Note that closed equations for the moments defined above cannot be written down for
the case of nonlinearity in the temperature-dependent physical properties, but may be
correctly and exactly established for the linearized case. These model equations may be
solved using a numerical method involving realization generation and Newton iteration,
as well as using a state-based stochastic method that is explicit in time.

5a. Implicit Numerical Solution

An implicitly defined and robust numerical solution may be applied to individually gen-
erated temporal realizations. This solution begins with the application of the Backward
Euler approximation to the model equations defined in equations (25) and (26), with in-
dividual time-step values over a discretized time domain being represented by the index
n. The result can then algebraically be set equal to zero and expressed as a function of
intensity and temperature, as shown in equations (30) and (31).

16



ϕn+1 − ∆tc2σa (θn+1) aθ4
n+1 + ∆tcσa (θn+1)ϕn+1 − ϕn = 0 (30)

θn+1 − ∆tσa (θn+1)
ρ (θn+1)Cv (θn+1)

ϕn+1 + ∆tcσa (θn+1)
ρ (θn+1)Cv (θn+1)

aθ4
n+1 − θn = 0 (31)

The details of a realization are provided by the allocation of an unstructured array of
arbitrary size determined at the time of realization generation. The first material within
the realization is sampled from the temporal occupation fraction of each material, which
must be defined within the problem parameters. This temporal occupation fraction is
conceptually similar to a volume fraction, however applied to temporal coordinates as
opposed to spatial coordinates.

By defining each segment of any contiguous material as a sublayer, the methodology
utilized to construct an independent realization can be described as discretizing each
sublayer into a set number of time points, after which the next sublayer generated
is discretized into the same number of time points. This repeats until the specified
completion time for the problem is reached, upon which the last sublayer generated is
truncated to the completion time, and then discretized into the same set number of
time points. This generation-and-discretization scheme prevents solving the transport
equation at a condition where a material transition occurs in the midst of a time-step,
which if it were to happen, would reinstate a closure problem within the discretized cell
of the problem domain. As these discretizations are of arbitrary temporal width ∆t,
determined at the time of sampling the temporal sublayer duration, the results of the
transport model must be mapped onto a structured overlay grid that will be used to
define the conditionally averaged quantities of interest for the problem.

The unstructured to structured discretization conversion is accomplished by using
time-duration weights on the values computed at the unstructured time points to obtain
time-duration weighted values at the structured time points of interest. This process
by necessity results in the inclusion of ”partial values” induced by material transitions
occurring in the middle of a structured time-step. These partial values preserve the
mean quantity of the parameter in question, but introduce notable statistical error into
the solution.

5b. Stochastic Simulation Algorithm

A stochastic simulation algorithm is developed as an alternative to the direct numerical
solution, which bypasses the requirement to generate temporal realizations on which to
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solve the transport equations, and instead defines a sampling scheme across a structured
discretization profile without the need for any mapping process to occur. This algorithm
can be derived by stating that: within a sufficiently small but finite time duration ∆t,
two mutually exclusive events may occur, those being either a material transition or the
absence of a material transition. In the case of the latter event, the internal state of the
system is propagated according to the physical parameters of radiation transport.

The probability of a material transition is shown in equation (32):

P (i → j) = ∆t
τi

(32)

Alternatively, the internal state of the system, comprised of radiation intensity I and
material temperature T will change subject to the probability shown in equation (33):

P (¬ (i → j)) = 1 − ∆t
τi

(33)

These probabilities depend on a mean sojourn time τi of material i, defined as the
average amount of time that the state of the system is comprised of material i before
changing. This is comparable to the mean chord length of a spatially stochastic system,
but applied to temporal coordinates, with a similar relation to the temporal occupa-
tion fraction. The probability of an internal state change occurring concurrently with
a material transition is O (∆t2), and subsequently ignored as inconsequential given a
sufficiently small value of ∆t.

In the event that an internal state change occurs, the governing equations may be de-
terministically derived from the use of the forward Euler approximation on equations (25)
and (26), the results of which are shown in equations (34) and (35):

I (t+ ∆t) − I (t) = ∆t
(
c2σa (T ) aT (t)4 − cσa (T ) I (t)

)
(34)

T (t+ ∆t) − T (t) = ∆t
ρ (T )Cv (T )

(
σa (T ) I (t) − cσa (T ) aT (t)4

)
(35)

As with the realization generation method, the initial material present in any given
history of the system is sampled from the temporal occupation fraction of the two materi-
als. Following the determination of the initial material, the above described probabilities
are sampled within each discrete time-step, determining either a material transition or
an internal state change within that time-step, accompanied by a time propagation of
∆t until the specified completion time of the problem is reached. Many such histories
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are computed, the results of which are used to obtain conditionally averaged values for
material properties of interest. By nature of these solution statements, one stochastic
simulation history is directly comparable to one temporal realization generated for the
direct implicit numerical solution.

5c. Heuristic Model for Material Averages

Within the definition of the temporally-varying problem, it is noted that the statistics
of the material mixing and solution dynamics are jointly Markovian, thereby rendering
the Levermore-Pomraning closure model exact. However, the material properties within
such a closure model must be represented as functions of the average temperature.
Coupled equations for the radiation intensity transport and material energy balance
in the heuristic extension of the temporal problem are shown below in the coupled
equations (36), (37), (38), and (39):

dpiIi (t)
dt

= c2σai (Ti, t) api [Ti (t)]4 − cσai (Ti, t) Ii (t) + pjIj (t)
τj

− piIi (t)
τi

(36)

dpjIj (t)
dt

= c2σaj (Tj, t) apj [Tj (t)]4 − cσaj (Tj, t) Ij (t) + piIi (t)
τi

− pjIj (t)
τj

(37)

dpiTi (t)
dt

= 1
ρi (Ti, t)Cvi (Ti, t)

(
σai (Ti, t) Ii (t) − cσai (Ti, t) api [Ti (t)]4

)
+ pjTj (t)

τj

− piTi (t)
τi

(38)

dpjTj (t)
dt

= 1
ρj (Tj, t)Cvj (Tj, t)

(
σaj (Tj, t) Ij (t) − cσaj (Tj, t) apj [Tj (t)]4

)
+ piTi (t)

τi

− pjTj (t)
τj

(39)

These equations, due to the jointly Markovian physics, allow for the isolation of the
error introduced by the closure terms in both the radiation intensity and material tem-
perature. The solution to the heuristic model can be developed similarly to the direct
numerical simulation via a discretization scheme, but without the need for generating
individual realizations.
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5d. Radiation Loss

In addition to the models for an equilibrium case, an ad-hoc approach to accounting for
a loss of radiation or leakage to the problem domain has also been implemented. This
is effectively a simple additional term in the radiation transport equation of the system
as seen in equation (25), which now looks as shown in equation (40):

1
c

∂I (t;ω)
∂t

+ ασa (T, t;ω) I (t;ω) = cσa (T, t;ω) aT 4 (t;ω) (40)

Due to the lack of physical data for the specific time-dependent problem as described
herein, the leakage takes the form of a simple modifier folded with the absorption term
in the problem, denoted as α. Any value of α greater than unity will effectively siphon
radiative energy from the system, approximating the effect that a constant leakage term
would have. The solution equations are modified accordingly, with the simple product
of this destruction factor on the radiation absorption terms within each model.

5e. Numerical Results

As a presentation of a comparison of the implicit numerical method and the explicit
stochastic simulation algorithm, consider a case where the only material property that
varies as a function of temperature is opacity, subject to equation (41):

σai (T ) = Ai

T 3 (41)

The constants defined for each material are as follows: A1 = 1.0 eV3 cm−1, A2 = 5.0
eV3 cm−1, τ1 = 3.35 × 10−14 s, τ2 = 1.67 × 10−13 s, ρ1 = ρ2 = 1.0 g cm−3, Cv1 =
Cv2 = 1.0 erg g−1 eV−1. The initial values of the problem are defined as: I0 = 1.0 erg
cm−2 s−1, and T0 = 1.0 eV. The selected initial conditions of the problem describe a
system with a relatively small amount of initial radiative energy and a relatively large
amount of initial material temperature, such that the dynamics of the problem involve a
transition of thermal energy into radiative energy. The selected end time of the problem
is 10−11 seconds. Note that time may be multiplied by the constant speed of light
value c to be of a more reasonable magnitude. The radiation intensity profiles of the
implicit numerical method and the explicit stochastic simulation algorithm may be seen
in Figure 5. For both the numerical and stochastic simulation algorithms, the number
of time-steps utilized was 103. The direct numerical simulation method computed 105

realization and averaged the results, while the stochastic simulation method computed
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105 histories and averaged the results. For the sake of comparison, the profile obtained
by solving the atomic mix model as well as the heuristic model with the same parameters
is also shown in each figure.

(a) Direct Numerical Experiment (b) Stochastic Simulation

Figure 5: Radiation Intensity Profiles

Within the profiles, it can be seen that the statistical noise accrued during the un-
structured to structured discretization mapping method is visible in the results. The
most visible location on the intensity profile is towards the lower time values of the
profile, where the magnitude is smaller and the relative visual difference is heightened
by the logarithmic scale of the figures. The standard deviation shown by the stochastic
simulation method is largely attributed to that introduced by the inherent stochasticity
of the problem, until the system has existed for a long enough period of time to reach an
equilibrium value between radiative energy and thermal energy due to the lack of energy
loss terms present in the system. This same standard deviation trend in stochasticity is
present in the numerical solution, and is much larger in relative scale to the noise pro-
duced by the mapping process. Similar effects are seen in Figure 6 for the temperature
profiles of the numerical method and the stochastic simulation method. As before, these
profiles also contain the atomic mix model and heuristic model solutions.
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(a) Direct Numerical Experiment (b) Stochastic Simulation

Figure 6: Temperature Profiles

It should be noted that the standard deviation computed from the square root of the
variance is assumed symmetric about the mean trend line in each profile, which may
not necessarily reflect reality. That is, it is considered to be physically improbable that
the temperature profile of any given material realization of history will undershoot the
equilibrium value between radiation and material energy, but rather once equilibrium
value is reached it can be assumed that any deviation from that value is unphysical.

The performance of the stochastic simulation algorithm in comparison to the direct
implicit numerical solution is consistently drastically improved. Specifically, the implicit
numerical solution takes approximately 70 times more compute time to complete than
does the stochastic simulation algorithm.

By setting the value of α, the radiation destruction factor that is used as a multiplier
on the absorption terms in the equations, to a value of 1.5, the profiles seen in Figure 7 are
produced. The resultant ensemble averaged profiles from both the stochastic simulation
algorithm and the numerical solution are essentially identical, and visually indistinct.
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(a) Intensity with Loss (b) Temperature with Loss

Figure 7: Parameter Profiles with Radiation Loss

5f. Probability Densities

In addition to the low order moments of parameters of interest for this system, the values
at a specific time step of individual realizations or histories may be tallied to construct
a histogram profile, which can then be normalized into a probability density function
in the form of a curve. The process for computing these profiles includes a first-pass of
the problem to establish the minimum and maximum values seen such that histogram
bins may be produced, and then a second-pass to fill the bins with tallies and produce a
probability density function curve. The results of taking these tallies at a time-step that
is just short of the equilibrium location for the general case, and a time-step that is near
the peak intensity profile for the case with the ad-hoc leakage adjustment, are shown
in Figures 8, 9, and 10. These are relatively rough profiles due to the computationally
intensive nature of construction, computed from ten histogram bins each.
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(a) Intensity PDF (b) Intensity PDF with Loss

Figure 8: Intensity Probability Density Functions

(a) Temperature PDF (b) Temperature PDF with Loss

Figure 9: Temperature Probability Density Functions
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(a) Opacity PDF (b) Opacity PDF with Loss

Figure 10: Opacity Probability Density Functions

These profiles also include the results of the heuristic model, as well as the atomic mix
model for comparison. The blue line indicating the ensemble average results are those
that are obtained from computing the ensemble average mean value at that location in
time from both materials.

A direct calculation of the probability density functions is also possible. Applying the
principle of conservation of probability to the Markovian system yields exactly closed
equations for the joint conditional probability density Pi (ϕ, θ, t) dϕdθ, which is the prob-
ability that the radiation intensity lies in the range (ϕ, ϕ+ dϕ) and that the temperature
lies in the range (θ, θ + dθ), conditioned on the material being material i. These equa-
tions can be seen below, as equations (42) and (43):

∂

∂t
(p1P1) + ∂

∂ϕ
(f1p1P1) + ∂

∂θ
(g1p1P1) = p2

τ2
P2 − p1

τ1
P1 (42)

∂

∂t
(p2P2) + ∂

∂ϕ
(f2p2P2) + ∂

∂θ
(g2p2P2) = p1

τ1
P1 − p2

τ2
P2 (43)

The functions fi and gi are defined as in equations (44) and (45):

fi (ϕ, θ) = cσai (θ)
(
caθ4 − ϕ

)
(44)

gi (ϕ, θ) = σai (θ)
ρiCvi (θ)

(
ϕ− caθ4

)
(45)

These equations will be solved and benchmarked against histogram profiles generated
from the efficient stochastic simulation algorithm. Possible numerical solution method-
ologies are the utility of a backward Euler approximation in time, or the application
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of finite difference or finite element methods in the intensity and temperature profiles.
There may be a heuristic closure model for non-Markovian switching that possible to
incorporate and study, but that is very much dependent on the time remaining within
this research deadline.
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6. Implicit Monte Carlo Implementation in Branson

Monte Carlo methods use stochastic sampling to determine how and where a model
particle moves through a system, and through the laws of large numbers are able to
approximate a general solution to a complicated or multi-dimensional system. Monte
Carlo methods typically come at the expense of a long run-time, and have a standard
convergence criteria proportional to 1√

N
, where N is the number of histories computed.

The Implicit Monte Carlo (IMC) method of representation of the thermal radiative
transport equations relies on an O (∆t) approximation on the thermal emission of the
physics, as seen in equation (46), given a time-step n, resulting from a Taylor series
expansion in ∆t = t− tn about tn:

T 4
n+1 = T 4

n + 4∆tT 3
n

∂T

∂t
+O

(
∆t2

)
(46)

This results in a need for an effective scattering approximation [10] to represent particle
absorption and re-emission within the current time-step, denoted by the so-called Fleck
factor f , seen in equation (47):

f = 1
1 + 4acT 3σa∆t

ρCv

(47)

The thermal radiative transport equations are then expressed as in equations (48)
and (49):

1
c

∂I
(
r⃗, Ω⃗, t

)
∂t

+ Ω⃗ · ∇⃗I
(
r⃗, Ω⃗, t

)
=

f

4πcσa (T, r⃗) a [T (r⃗, t)]4 + 1 − f

4π

∫
4π
dΩ⃗′σa (T, r⃗) I

(
r⃗, Ω⃗′, t

)
(48)

ρ (T, r⃗)Cv (T, r⃗) ∂T (r⃗, t)
∂t

+ fcσa (T, r⃗) a [T (r⃗, t)]4 = fσa (T, r⃗)
∫

4π
dΩ⃗′I

(
r⃗, Ω⃗′, t

)
(49)

The thermal radiation transport equations are linearized by the use of a semi-implicit
time discretization, by virtue of which IMC is subject to a maximum principle stability
limit, restricting the spatial mesh and temporal discretization limits. If the maximum
principle stability limit is violated, unphysical behavior results, in particular the exis-
tence of temperatures within the problem domain that are larger than a source temper-
ature.
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A simple Cartesian-coordinate IMC implementation called Branson has been writ-
ten by Alex Long at Los Alamos National Laboratory [11], and serves as a basis for
stochastic media experiment development in an IMC context. Branson uses standard
IMC transport algorithms [12] to trace particles, track radiation fluence and material
parameters, and output data in a readable and post-processable uniform format.

Branson previously utilized only vacuum and reflective boundary conditions, with
additional bookkeeping conditions used for managing photon transport between compu-
tational ranks in the context of parallel processing. Certain problems of interest involve
a large amount of incident radiation on initially cold media, wherein radiation is trans-
ported through the media as a Marshak wave [13]. Such problems are modeled easily
with a boundary condition capable of generating isotropic photon packets from a set
temperature. To this end, a source boundary condition option has been made avail-
able, which includes a temperature value as input. This boundary condition generates
work packets of photons at the boundary face of the problem, with additional logic
for separating the photon transport workload between computational ranks for parallel
computation.

Due to the high volume of comptutational work required for modeling stochastic
media via geometry generation, a method that requires only one iteration of transport
calculation may be preferred for problem modeling. The chord length sampling method
creates a probability distribution function that describes the distribution of different
materials within a stochastic mixture, comparable to that of the LP closure model [8].
During photon transport, the distribution is used to sample a probable location at which
the photon packet will transition to a new material. If that distance is shorter than
the distance to the next interaction, it is assumed that the photon packet transitions
materials at the sampled distance. This method assumes that every segment of a photon
history is uncorrelated, which means that in problems with a relatively large amount of
scattering or effective scattering interactions, photons that are back-scattered toward a
sampled material will no longer see the same material as it was known to the photon
previously. This method will be accurate for pure-absorber problems, but less so for
media that incorporate scattering physics.

As a comparison, consider a problem with densities and specific heats set to unity.
The constant value of σ1 is 90.1, the constant value of σ2 is 0.10, the value of λ1 is 0.11,
and the value of λ2 is 0.99. The atomic mix results are shown in Figure 11, the chord
length sampling results in Figure 12, and the realization generation in Figure 13.

A model of one-dimensional geometry is set up within a three-dimensional IMC pro-
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gram by taking advantage of reflective boundary conditions. A columnar geometry in
Cartesian coordinates is used, with subsequent segments extending the x-direction. Both
boundary conditions in the y-direction are reflecting, and both boundary conditions in
the z-direction are reflecting, allowing for the geometry to be mathematically equivalent
to a planar medium. The volumetric nature of certain properties such as the material
specific heat is offset by the balance of the transport equations themselves, wherein a bal-
ance between the absorption of radiation contributing to the temperature of the material
and the emission of radiation dependent on material temperature exists independent of
volume within a columnar segment of dx subject to reflective boundary conditions in y

and z.

Figure 11: Homogeneous 1D IMC Problem
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Figure 12: Chord Length Sampling 1D IMC Problem

Figure 13: Stochastic Geometry 1D IMC Problem
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Material temperature profiles are not shown for these cases because both the radiation
and the material temperature are initially set to 0.1 keV, and so they differ very little
from the radiation temperature profiles and offer no additional visual information. The
Marshak wave is propagating much more rapidly in the stochastic medium case, as there
are large portions of the problem that allow free streaming of the radiation due to the
optically thin material being the majority of the problem volume fraction. Once the
radiation reaches an optically thick sublayer, it possesses the majority of the energy
it had at the surface source (1 keV), and is able to deposit a large amount in the
optically thick material regardless of where it appears in the problem. However, the
wave in question is radiation temperature, which is most likely influenced primarily by
the radiation streaming to the boundary directly from the source rather than re-emission
from the materials, simply due to the mean chord length selected for the optically thin
material which occupies the entire problem domain. In the case of the homogenized
medium, the Marshak wave is propagating according to expected models but with much
more attenuation in radiation temperature. In this case, the exponential attenuation of
energy on each photon packet is constant and appreciable, and so towards the problem
boundary the photon possesses markedly less energy if it was not absorbed.

The chord length sampling method performs similarly to the realization generation
method, allowing for more particle streaming through optically thin regions of space than
seen in the atomic mix results. In this case, the equilibrium temperature of the system
at the vacuum boundary is higher in the chord length sampling method than in the
realization generation method. This is likely due to previous streaming paths known to
the particle no longer existing after an interaction involving angular re-distribution. This
ultimately results in particles that have streamed through a section of the domain not
often making the return trip if back-scattered, and being scattered or re-emitted later
in the problem domain than would be possible in the realization generation method.
The result is that the realization generation method keeps particles traveling within the
domain for longer due to the existence of set streaming paths, resulting in more effective
attenuation.

6a. Poisson Box Generation

Planned work is to expand the geometry generation in Branson to include two-dimensional
models through the use of Poisson Box tessellations [7]. A Poisson Box tesselation con-
sists of a two-dimensional domain wherein both the x and y dimensions are randomly
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intersected with a number of planes sampled according to the box density ρb, seen in
equation (50):

ρb = 2
3λc

(50)

This relationship depends on the correlation length of the system, itself a Markovian
statistical parameter, defined as seen in equation (51):

λc =
( 1
λ1

+ 1
λ2

)−1
(51)

The planes that bisect each axis are placed randomly according to a uniform distri-
bution across the domain equivalent to the length of the overall problem domain along
that axis. As random unstructured Cartesian boxes are constructed in the domain, they
are then randomly assigned a material by sampling uniformly from the volume fraction
of each material, in a process known as ”coloring”. Examples can be seen in Figure 14
and Figure 15.

Figure 14: Independent 2D Poisson-Box Realizations of λ1 = 101
20 cm [blue], λ2 = 101

20 cm
[red]

32



Figure 15: Independent 2D Poisson-Box Realizations of λ1 = 99
100 cm [blue], λ2 = 11

100 cm
[red]

Due to the similarities of Poisson Box tessellations with Markovian distributions [7],
such generation methodologies yield comparable results to stochastic Markovian physics.
By incorporating such two-dimensional geometries, it is planned to assess the Markovian
closure accuracy in two dimensions relative to one dimension. Additionally, diffusion
limits of chord length sampling solutions as well as realization generation methodologies
will be investigated in both 1D and 2D regimes.
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7. Non-Markovian Closure Model

This section may be considered ancillary to the bulk of this document, and may be
restricted in analysis by time constraints of the current research project.

Efforts to develop an effective and efficient alternative to the LP model that performs
as well, or better, in systems with non-Markovian effects are underway. In particular,
systems with stochastic geometries that are not described by Markovian mixing statistics
are not accurately described by the LP model. Additionally, any amount of particle
scattering introduces a non-Markovian element to the system by incorporating memory
effects into the particle transport.

For simplification, equations (10) and (11) are written for monoenergetic, steady-state,
one-dimensional slab geometry, where µ = cos (θ) and θ is the directional angle from the
x-axis that a particle travels, resulting in equations (52) and (53):

µ
∂piψi (x, µ)

∂x
+ σti (x) piψi (x, µ)

= σsi(x)

2

∫ 1

−1
dµ′piψi (x, µ′) + |µ|

(
pj

λj

ψj (x, µ) − pi

λi

ψi (x, µ)
)

(52)

µ
∂pjψj (x, µ)

∂x
+ σtj (x) pjψj (x, µ)

= σsj(x)

2

∫ 1

−1
dµ′pjψj (x, µ′) + |µ|

(
pi

λi

ψi (x, µ) − pj

λj

ψj (x, µ)
)

(53)

Whereas the LP model makes the substitution that ψi = ψi, the alternative use of a
memory kernel via an operator K to capture non-Markovian effects in a one-dimensional
system of domain D is proposed, seen in equation (54):

ψi = Kψi =
∫ 1

−1
dµ′

∫
D
dx′K (x′ → x;µ′ → µ)ψi (x′, µ′) (54)

A heuristic representation of Kψi has been chosen with a peaked memory kernel for
study, seen in equation (55):

Kψi = ηψi (x, µ) − sgn (µ) γ ∂
∂x
ψi (x, µ) (55)

Equation (55) introduces a memory parameter γ that governs the degree of influence
of the non-Markovian parameters of the system, as well as a Markovian parameter η
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that allows for the Markovian closure model terms to be present at varying intensities.
The sgn (µ) function present in equation (55) is necessary to preserve the symmetry of
the solution, as the first-order derivative term is direction-dependent.

Due to the fact that the memory effects are governed by the derivative terms in the
heuristic closure model, the representation of these effects is very localized. An example
illustrating this behavior may be seen by computing the solution to a high-contrast mix
problem subject to the parameters in Table 3. For ease of developing solutions and
as an ad-hoc approach to determining values of γ, the correlation length λc of the two
materials is used as a basis. The correlation length is a parameter specific to Markovian-
geometry problems, and may be computed in a binary material by the methodology seen
in equation (56):

λc =
( 1
λ1

+ 1
λ2

)−1
(56)

An important facet of γ in equation (55) is that to allow for standard transport
solution methodology to be appropriate, the value of γ may not exceed λc in the general
case. This allows for the combined streaming term to always be of the same sign as µ in
the resulting transport equation. This is not a physical or mathematical limit, however
extra care must be taken in cases when γ > λc.

Parameter Value
λ1

99
10

λ2
11
10

σ1
10
99

σ2
100
11

γ 2
3λc

η 1

Table 3: High-Contrast Mix

Independent material solutions for an isotropic flux of unity at the left boundary and a
vacuum condition at the right boundary may be seen in Figure 16, where the benchmark
solution by the generation of 5×106 geometries is represented in green. The LP model is
represented in red, and the non-Markovian closure model, denoted ”NM”, is represented
in blue. Note that there is an expected boundary layer in Material 2, due to the physical
parameters of the system. Particles that spawn in Material 2 very rapidly transition out
of Material 2 due to the small volume fraction of that material. This boundary layer
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is where the performance of the non-Markovian model shows improvement over that of
the LP model. However, in this case the model corrects itself to approximating the LP
solution for the majority of the problem domain.

(a) Material 1 Profiles (b) Material 2 Profiles

Figure 16: High-Contrast Mix Profiles

A low-contrast mix is also studied, subject to the values in Table 4. While the value
for gamma remains the same as that for the high contrast mix, improvement in the
solution within the domain of the problem can be seen by adjusting the value of η.

Parameter Value
λ1 3.00
λ2 1.00
σ1 1.00
σ2 5.00
γ 2

3λc

Table 4: Low-Contrast Mix
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(a) Material 1 Profiles (b) Material 2 Profiles

Figure 17: Low-Contrast Mix Profiles

Further efforts to characterize a non-Markovian closure model are required. To this
end, a strong-memory approximation is proposed, seen in equation (57):

Kψi = ηψi (x, µ) − sgn (µ) γ ∂
∂x
ψi (x, µ) +

∫
D
dx′K (x′ → x)ϕi (x′) (57)

In the above equation, K is the memory kernel denoting the effects of systemic memory
on the transport solution. One possible selection for a kernel would be an exponential
parameterized kernel, shown in equations (58) and (59):

K (x′ → x) = k0

β
exp

(
−|x− x′|

β

)
(58)

β = 1
k0

∫ ∞

0
xK (x) dx (59)

The above equations have a purely theoretical basis for the exponential memory effect
and parameter choice, but allow for further testing beyond a simple localized derivative
term. These strong memory approximations would not require any special consider-
ation beyond standard transport solution techniques. A simple analytical solution is
possible using non-Markovian mixed nonscattering materials in a rod model context for
comparison.

Key areas of research will be in resolving boundary effects, as well as asymptotic
limits for the system. It is hoped that the atomic mix limit, high-contrast mix limit,
and diffusion limit will be able to be ascertained over the course of analysis.
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